organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter G. Jones,^a* Peter Bubenitschek,^b Henning Hopf^b and Martin Kreutzer^b

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 178 K Mean σ (C–C) = 0.005 Å R factor = 0.055 wR factor = 0.161 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*Z*)-3-[(1-Methylethyl)thiomethylene]-4phenyl-1,4-pentadiene-1,1,2-tricarbonitrile

In the title compound, $C_{18}H_{15}N_3S$, the limited extent of delocalization between the double-bond systems is shown by the mutual rotation of substituents about the formal single bonds NC-C(=C-S) and (S-C=)C-C(=CH₂) by 26 and 49°, respectively. Molecules are linked by four C-H···N and one S···N contact.

Received 16 December 2002 Accepted 17 December 2002 Online 24 December 2002

Comment

In our studies concerning the activating influence of the 1,1,2tricyanovinyl group on double and triple bonds (Hopf *et al.*, 1991), we were interested in the cycloaddition of the electronrich thioether (2) to 4-phenyl-1-buten-3-yne-1,1,2-tricarbonitrile, (1). When these two components were reacted at room temperature in dichloromethane, (Z)-3-[(1-methylethyl)thiomethylene]-4-phenyl-1,4-pentadiene-1,1,2-tricarbonitrile, (3), was produced in 68% yield (Kreutzer, 1993). Clearly [2 + 2]cycloaddition takes place under these mild conditions, followed by ring-opening of the intermediate cyclobutene adduct.

The molecule of (3) is shown in Fig. 1. Molecular dimensions (Table 1) may be considered normal. The atom sequence C4-C3-C9-S-C10-C11 displays an extended conformation. The extent of delocalization between the double-bond systems must be limited, as shown by the mutual rotation of substituents at C2-C3 and C3-C4 (the formal single bonds) by *ca* 26 and 49°, respectively.

The molecules are connected by four C-H···N contacts that could be regarded as weak hydrogen bonds (Table 2); three of these involve atom N2 as acceptor. There is also a contact S···N1(1 - x, -y, 1 - z) of 3.367 (3) Å.

Experimental

The title compound was synthesized as described by Kreutzer (1993) and recrystallized by diffusion of pentane into a chloroform solution.

Crystal data C18H15N3S $D_x = 1.240 \text{ Mg m}^{-3}$ $M_r = 305.39$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 50 a = 10.766 (3) Åreflections $b = 8.243 (2) \dot{A}$ $\theta = 10 - 12^{\circ}$ $\mu=0.20~\mathrm{mm}^{-1}$ c = 18.470(5) Å $\beta = 93.37 (2)^{\circ}$ T = 178 (2) K $V = 1636.3 (7) \text{ Å}^3$ Prism, red Z = 4 $0.6 \times 0.3 \times 0.3$ mm

C 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Nicolet R3 diffractometer
ω scans
Absorption correction: none
2987 measured reflections
2886 independent reflections
1898 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.015$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.161$ S = 1.022886 reflections 201 parameters H-atom parameters constrained

$\theta_{\text{max}} = 25.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -9 \rightarrow 1$ $l = -22 \rightarrow 0$ 3 standard reflections every 147 reflections intensity decay: 4% $w = 1/[\sigma^2(F_o^2) + (0.0653P)^2]$

$$\begin{split} & = 1/[\sigma (r_o) + (0.0033P) \\ & + 2.0333P] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.002 \\ \Delta\rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} = -0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

S-C9	1.704 (3)	C2-C3	1.445 (4)
S-C10	1.827 (3)	C3-C9	1.363 (4)
C1-C2	1.372 (4)		
C9-S-C10	100.29 (16)		
	()		
C1-C2-C3-C4	-26.0(5)	C10-S-C9-C3	163.1 (3)
C9-C3-C4-C5	-49.1(5)	C9-S-C10-C12	-70.5(3)
C9-C3-C4-C13	125.8 (3)	C9-S-C10-C11	167.0 (2)
C4-C3-C9-S	170.3 (2)		()
	()		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C9-H9\cdots N2^{i}$	0.95	2.71	3.626 (5)	163
$C10-H10\cdots N2^{i}$	1.00	2.64	3.484 (5)	142
$C17-H17\cdots N2^{ii}$	0.95	2.69	3.564 (5)	154
$C14{-}H14{\cdot}{\cdot}{\cdot}N3^{iii}$	0.95	2.63	3.392 (5)	137
Symmetry codes: (i) 1	$-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $2 - x, \frac{1}{2} +$	$y, \frac{1}{2} - z;$ (iii) $1 - x$	1 - v, 1 - z.

Methyl H atoms were identified in difference syntheses, placed in idealized positions and then refined using rigid methyl groups (C– H = 0.98 Å and H–C–H = 109.5°) allowed to rotate but not tip.

Figure 1

The molecule of compound (3) in the crystal. Ellipsoids are shown at the 30% probability level. H-atom radii are arbitrary.

Other H atoms were included using a riding model, with C-H = 0.95 (*sp*²) or 1.00 Å (methine).

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Hopf, H., Kreutzer, M. & Jones, P. G. (1991). Angew. Chem. 103, 1148–1149; Angew. Chem. Int. Ed. Engl. 30, 1127–1128.

Kreutzer, M. (1993). PhD thesis, Technical University of Braunschweig, Germany.

Nicolet (1987). P3, XDISK and XEMP. Nicolet Instrument Corporation, Madison, Wisconsin, USA.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.